Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1107893, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2285982

RESUMO

Introduction: Since Aedes aegypti invaded Yunnan Province in 2002, its total population has continued to expand. Shi et al. used microsatellite and mitochondrial molecular markers to study the Ae. aegypti populations in Yunnan Province in 2015 and 2016, found that it showed high genetic diversity and genetic structure. However, there are few studies on the population genetic characteristics of Ae. aegypti in Yunnan Province under different levels of human intervention. This study mainly used two common types of molecular markers to analyze the genetic characteristics of Ae. aegypti, revealing the influence of different input, prevention and control pressures on the genetic diversity and structure of this species. Understanding the genetic characteristics of Ae. aegypti populations and clarifying the diversity, spread status, and source of invasion are essential for the prevention, control and elimination of this disease vector. Methods: We analyzed the genetic diversity and genetic structure of 22 populations sampled in Yunnan Province in 2019 and 17 populations sampled in 2020 through nine microsatellite loci and COI and ND4 fragments of mitochondrial DNA. In 2019, a total of 22 natural populations were obtained, each containing 30 samples, a total of 660 samples. In 2020, a total of 17 natural populations were obtained. Similarly, each population had 30 samples, and a total of 510 samples were obtained. Results: Analysis of Ae. aegypti populations in 2019 and 2020 based on microsatellite markers revealed 67 and 72 alleles, respectively. The average allelic richness of the populations in 2019 was 3.659, while that in 2020 was 3.965. The HWE analysis of the 22 populations sampled in 2019 revealed significant departure only in the QSH-2 population. The 17 populations sampled in 2020 were all in HWE. The average polymorphic information content (PIC) values were 0.546 and 0.545, respectively, showing high polymorphism. The average observed heterozygosity of the 2019 and 2020 populations was 0.538 and 0.514, respectively, and the expected average heterozygosity was 0.517 and 0.519, showing high genetic diversity in all mosquito populations. By analyzing the COI and ND4 fragments in the mitochondrial DNA of Ae. aegypti, the populations sampled in 2019 had a total of 10 COI haplotypes and 17 ND4 haplotypes. A total of 20 COI haplotypes were found in the populations sampled in 2020, and a total of 24 ND4 haplotypes were obtained. STRUCTURE, UPGMA and DAPC cluster analyses and a network diagram constructed based on COI and ND4 fragments showed that the populations of Ae. aegypti in Yunnan Province sampled in 2019 and 2020 could be divided into two clusters. At the beginning of 2020, due to the impact of COVID-19, the flow of goods between the port areas of Yunnan Province and neighboring countries was reduced, and the sterilization was more effective when goods enter the customs, leading to different immigration pressures on Ae. aegypti population in Yunnan Province between 2019 and 2020, the source populations of the 2019 and 2020 populations changed. Mantel test is generally used to detect the correlation between genetic distance and geographical distance, the analysis indicated that population geographic distance and genetic distance had a moderately significant correlation in 2019 and 2020 (2019: p < 0.05 R2 = 0.4807, 2020: p < 0.05 R2 = 0.4233). Conclusion: Ae. aegypti in Yunnan Province maintains a high degree of genetic diversity. Human interference is one reason for the changes in the genetic characteristics of this disease vector.

2.
Viruses ; 14(10)2022 10 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2066557

RESUMO

INTRODUCTION: Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015-16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito's viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. METHODS: Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda-cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. RESULTS: We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda-cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda-cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. CONCLUSIONS: Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda-cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses.


Assuntos
Aedes , Anti-Infecciosos , Arbovírus , COVID-19 , Dengue , Inseticidas , Piretrinas , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Zika virus/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Colômbia/epidemiologia , Pandemias , Triptofano , Mosquitos Vetores , Piretrinas/farmacologia , Bactérias , Redes e Vias Metabólicas , Fenazinas , Mucinas , Transportadores de Cassetes de Ligação de ATP , Anti-Infecciosos/farmacologia , Alginatos
3.
Trop Med Infect Dis ; 7(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: covidwho-2066499

RESUMO

Contrary to expectation, dengue incidence decreased in many countries during the period when stringent population movement restrictions were imposed to combat COVID-19. Using a seasonal autoregressive integrated moving average model, we previously reported a 74% reduction in the predicted number of dengue cases from March 2020 to April 2021 in the whole of Sri Lanka, with reductions occurring in all 25 districts in the country. The reduction in dengue incidence was accompanied by an 87% reduction in larval collections of Aedes vectors in the northern city of Jaffna. It was proposed that movement restrictions led to reduced human contact and blood feeding by Aedes vectors, accompanied by decreased oviposition and vector densities, which were responsible for diminished dengue transmission. These findings are extended in the present study by investigating the relationship between dengue incidence, population movement restrictions, and vector larval collections between May 2021 and July 2022, when movement restrictions began to be lifted, with their complete removal in November 2021. The new findings further support our previous proposal that population movement restrictions imposed during the COVID-19 pandemic reduced dengue transmission primarily by influencing human-Aedes vector interaction dynamics.

4.
J King Saud Univ Sci ; 34(6): 102179, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: covidwho-1895228

RESUMO

Chikungunya, Zika, Dengue Viruses, and now Novel Coronavirus are global health challenges that cause human diseases ranging from febrile illnesses to death. Most of these viruses are mainly vectored by Aedes mosquitoes worldwide. Molecular detection of arboviruses was made in female Aedes mosquito pools caught from all the seven districts by using a reliable molecular technique, "RT-PCR." From 216 collections of Aedes species, arboviruses were detected in 27, including only Alphavirus genus to determine mosquito abundance and evaluate the potential role of Aedes aegypti and Ae. albopictus mosquitoes in arboviruses and nvel Coronavirus transmission. 5322 mosquitoes were collected using aspirators; 35.31% (n = 2049) were identified as female Aedes using morphological keys, pooled into 216 pools, and tested for arboviruses and coronaviruses by using RT-PCR with the help of specific primers. Novel Coronavirus was not detected in this study. Only the Flavivirus genus was detected in twenty-seven pools giving an infection rate of 62.96% (n = 17) for DENV2, while DENV3 was 37.03% (n = 10). Furthermore, our results indicated no role of mosquitoes in the spread of Covid-19. Results showed a higher infection rate in urban sites than in rural ones. The detection of arboviruses indicates possible human health risk due to active role of these mosquitoes in spreading of arbovirus in the study area.

5.
Front Public Health ; 10: 778736, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1775985

RESUMO

A key component of integrated vector management strategies is the efficient implementation of mosquito traps for surveillance and control. Numerous trap types have been created with distinct designs and capture mechanisms, but identification of the most effective trap type is critical for effective implementation. For dengue vector surveillance, previous studies have demonstrated that active traps utilizing CO2 attractant are more effective than passive traps for capturing Aedes mosquitoes. However, maintaining CO2 supply in traps is so labor intensive as to be likely unfeasible in crowded residential areas, and it is unclear how much more effective active traps lacking attractants are than purely passive traps. In this study, we analyzed Aedes capture data collected in 2019 from six urban areas in Kaohsiung City to compare Aedes mosquito catch rates between (passive) gravitraps and (active) fan-traps. The average gravitrap index (GI) and fan-trap index (FI) values were 0.68 and 3.39 respectively at peak catch times from June to August 2019, with consistently higher FI values calculated in all areas studied. We compared trap indices to reported cases of dengue fever and correlated them with weekly fluctuations in temperature and rainfall. We found that FI trends aligned more closely with case numbers and rainfall than GI values, supporting the use of fan-traps for Aedes mosquito surveillance and control as part of broader vector management strategies. Furthermore, combining fan-trap catch data with rapid testing for dengue infections may improve the early identification and prevention of future disease outbreaks.


Assuntos
Aedes , Controle de Mosquitos , Animais , Mosquitos Vetores , Taiwan
6.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1760648

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus endemic to Africa and the Arabian Peninsula, which causes diseases in humans and livestock. C-type lectin receptors (CLRs) represent a superfamily of pattern recognition receptors that were reported to interact with diverse viruses and contribute to antiviral immune responses but may also act as attachment factors or entry receptors in diverse species. Human DC-SIGN and L-SIGN are known to interact with RVFV and to facilitate viral host cell entry, but the roles of further host and vector CLRs are still unknown. In this study, we present a CLR-Fc fusion protein library to screen RVFV-CLR interaction in a cross-species approach and identified novel murine, ovine, and Aedes aegypti RVFV candidate receptors. Furthermore, cross-species CLR binding studies enabled observations of the differences and similarities in binding preferences of RVFV between mammalian CLR homologues, as well as more distant vector/host CLRs.


Assuntos
Aedes , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Lectinas Tipo C/genética , Mamíferos , Camundongos , Mosquitos Vetores/genética , Ovinos
7.
BMC Public Health ; 22(1): 388, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1700631

RESUMO

BACKGROUND: Dengue is the major mosquito-borne disease in Sri Lanka. After its first detection in January 2020, COVID-19 has become the major health issue in Sri Lanka. The impact of public health measures, notably restrictions on movement of people to curb COVID-19 transmission, on the incidence of dengue during the period March 2020 to April 2021 was investigated. METHODS: The incidence of dengue and COVID-19, rainfall and the public movement restrictions implemented to contain COVID-19 transmission were obtained from Sri Lanka government sources. A Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used to predict the monthly dengue incidence from March 2020 to April 2021 for each of the country's 25 districts based on five years of pre-pandemic data, and compared with the actual recorded incidence of dengue during this period. Ovitrap collections of Aedes larvae were performed in Jaffna city in the Jaffna district from August 2020 to April 2021 and the findings compared with similar collections made in the pre-pandemic period from March 2019 to December 2019. RESULTS: The recorded numbers of dengue cases for every month from March 2020 to April 2021 in the whole country and for all 25 districts over the same period were lower than the numbers of dengue cases predicted from data for the five years (2015-2019) immediately preceding the COVID-19 pandemic. The number of dengue cases recorded nationwide represented a 74% reduction from the predicted number of dengue cases for the March 2020 to April 2021 period. The numbers of Aedes larvae collected from ovitraps per month were reduced by 88.6% with a lower proportion of Ae. aegypti than Ae. albopictus in Jaffna city from August 2020 until April 2021 compared with March 2019 to December 2019. CONCLUSION: Public health measures that restricted movement of people, closed schools, universities and offices to contain COVID-19 transmission unexpectedly led to a significant reduction in the reported numbers of dengue cases in Sri Lanka. This contrasts with findings reported from Singapore. The differences between the two tropical islands have significant implications for the epidemiology of dengue. Reduced access to blood meals and lower vector densities, particularly of Ae. aegypti, resulting from the restrictions on movement of people, are suggested to have contributed to the lower dengue incidence in Sri Lanka.


Assuntos
Aedes , COVID-19 , Dengue , Animais , COVID-19/epidemiologia , Dengue/epidemiologia , Dengue/prevenção & controle , Humanos , Incidência , Mosquitos Vetores , Pandemias/prevenção & controle , SARS-CoV-2 , Sri Lanka/epidemiologia
8.
Rev Med Virol ; 32(4): e2333, 2022 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1669637

RESUMO

This last decade has seen a resurgence of yellow fever (YF) in historical endemic regions and repeated attempts of YF introduction in YF-free countries such as the Asia-Pacific region and the Caribbean. Infected travellers are the main entry routes in these regions where competent mosquito vectors proliferate in appropriate environmental conditions. With the discovery of the 17D vaccine, it was thought that YF would be eradicated. Unfortunately, it was not the case and, contrary to dengue, chikungunya and Zika, factors that cotribute to YF transmission remain under investigation. Today, all the signals are red and it is very likely that YF will be the next pandemic in the YF-free regions where millions of people are immunologically naïve. Unlike COVID-19, YF is associated with a high case-fatality rate and a high number of deaths are expected. This review gives an overview of global YF situation, including the non-endemic Asia-Pacific region and the Caribbean where Aedes aegypti is abundantly distributed, and also proposes different hypotheses on why YF outbreaks have not yet occurred despite high records of travellers importing YF into these regions and what role Aedes mosquitoes play in the emergence of urban YF.


Assuntos
Aedes , COVID-19 , Febre de Chikungunya , Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Humanos , Mosquitos Vetores , Febre Amarela/epidemiologia , Vírus da Febre Amarela
9.
Clin Med (Lond) ; 22(1): 9-13, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1737353

RESUMO

Dengue is an arboviral infection that is hyperendemic in tropical and subtropical climates. Clinical manifestations of dengue can range from asymptomatic infection to severe infection with multi-organ failure. Dengue haemorrhagic fever (DHF) is a subcategory in dengue infection with a hallmark of plasma leak (ie critical phase). The plasma leak in DHF is selective (pleuroperitoneal spaces), transient and dynamic, and needs careful monitoring and meticulous fluid resuscitation. In addition, dengue fever may present with extended and unusual manifestations affecting any organ, including the heart, liver, kidney and brain. Studies on vaccine development and vector control are ongoing to prevent this infection of global importance. In this article, the clinicopathological features and management aspects of dengue are discussed.


Assuntos
Dengue , Dengue Grave , Dengue/diagnóstico , Dengue/terapia , Hidratação , Humanos
10.
J Theor Biol ; 535: 110987, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1620894

RESUMO

The annual death statistics due to vector-borne diseases transmitted by Aedes mosquitoes cause a still growing concern for the public health in the affected regions. An improved understanding of how climatic and population changes impact the spread of Aedes aegypti will help estimate the future populations exposure and vulnerability, and is essential to the improvement of public health preparedness. We apply an empirically well-investigated process-based mathematical model based on the life cycle of the mosquito to assess how climate scenarios (Representative Concentration Pathways (RCP)) and population scenarios (Shared Socioeconomic Pathways (SSP)) will affect the growth and potential distribution of this mosquito in China. Our results show that the risk area is predicted to expand considerably, increasing up to 21.46% and 24.75% of China's land area in 2050 and 2070, respectively, and the new added area lies mainly in the east and center of China. The population in the risk area grows substantially up to 2050 and then drops down steadily. However, these predicted changes vary noticeably among different combinations between RCPs and SSPs with the RCP2.6*SSP4 yielding the most favorable scenario in 2070, representing approximately 14.11% of China's land area and 113 cities at risk, which is slightly lower compared to 2019. Our results further reveal that there is a significant trade-off between climatic and human population impacts on the spreading of Aedes aegypti, possibly leading to an overestimation (underestimation) in sparsely (densely) populated areas if the populations impact on the mosquito's life history is unaccounted for. These results suggest that both climate and population changes are crucial factors in the formation of the populations exposure to Aedes-borne virus transmission in China, however, a reduced population growth rate may slow down the spread of this mosquito by effectively counteracting the climate warming impacts.


Assuntos
Aedes , Animais , Cidades , Mudança Climática , Humanos , Modelos Teóricos , Mosquitos Vetores
11.
J Med Entomol ; 59(1): 301-307, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1784366

RESUMO

The efficacy of three groups of insect growth regulators, namely juvenile hormone mimics (methoprene and pyriproxyfen), chitin synthesis inhibitors (diflubenzuron and novaluron), and molting disruptor (cyromazine) was evaluated for the first time, against Aedes albopictus Skuse (Diptera: Culicidae) larvae from 14 districts in Sabah, Malaysia. The results showed that all field populations of Ae. albopictus were susceptible towards methoprene, pyriproxyfen, diflubenzuron, novaluron, and cyromazine, with resistance ratio values ranging from 0.50-0.90, 0.60-1.00, 0.67-1.17, 0.71-1.29, and 0.74-1.07, respectively. Overall, the efficacy assessment of insect growth regulators in this study showed promising outcomes and they could be further explored as an alternative to conventional insecticides.


Assuntos
Aedes , Hormônios Juvenis/farmacologia , Controle de Mosquitos/métodos , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Animais , Diflubenzuron/farmacologia , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/crescimento & desenvolvimento , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Malásia , Metoprene/farmacologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia
12.
Acta Trop ; 227: 106269, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1729465

RESUMO

Monte Verde, a peri­urban squatter community near San Pedro Sula, virtually eliminated Aedes aegypti production in all known larval habitats: wells; water storage containers including pilas (open concrete water tanks used for laundry), 200-liter drums, 1000-liter plastic "cisterns," buckets; and objects collecting rainwater. The project began in 2016 when Monte Verde was overrun with dengue, Zika, and chikungunya. During more than a year of experimentation, Monte Verde residents crafted an effective, sustainable, and environmentally friendly toolkit that was inexpensive but required full community participation. Biological control with copepods, turtles, and tilapia was at the core of the toolkit, along with a mix of other methods such as getting rid of unnecessary containers, scrubbing them to remove Ae. aegypti eggs, and covering them to exclude mosquitoes or rainwater. Environmentally friendly larvicides also had a limited but crucial role. Key design features: (1) toolkit components known to be nearly 100% effective at preventing Ae. aegypti production when fitted to appropriate larval habitats; (2) using Ae. aegypti larval habitats as a resource by transforming them into "egg sinks" to drive Ae. aegypti population decline; (3) dedicated community volunteers who worked with their neighbors, targeting 100% coverage of all known Ae. aegypti larval habitats with an appropriate control method; (4) monthly monitoring in which the volunteers visited every house to assess progress and improve coverage as an ongoing learning experience for both volunteers and residents. Taking pupae as an indicator of Ae. aegypti production, from September 2018 to the end of the record in December 2021 (except for a brief lapse during COVID lockdown in 2020), the monthly count of pupae fluctuated between zero and 0.6% of the 22,984 pupae counted in the baseline survey at the beginning of the project. Adult Ae. aegypti declined to low numbers but did not disappear completely. There were no recognizable cases of dengue, Zika, or chikungunya after June 2018, though the study design based on a single site did not provide a basis for rigorous confirmation that Monte Verde's Ae. aegypti control program was responsible. Nonetheless, Monte Verde's success at eliminating Ae. aegypti production can serve as a model for extending this approach to other communities. Key ingredients for success were outside stimulation and facilitation to foster shared community awareness and commitment regarding the problem and its solution, enduring commitment of local leadership, compatibility of the toolkit with the local community, overcoming social obstacles, rapid results with "success breeding success," and building resilience.


Assuntos
Aedes , COVID-19 , Copépodes , Dengue , Tilápia , Tartarugas , Infecção por Zika virus , Zika virus , Aedes/fisiologia , Animais , Controle de Doenças Transmissíveis , Participação da Comunidade , Dengue/epidemiologia , Dengue/prevenção & controle , Honduras , Humanos , Larva , Controle de Mosquitos/métodos , SARS-CoV-2
13.
Artigo em Inglês | MEDLINE | ID: covidwho-1611682

RESUMO

Blood-fed insects can be used to analyse the host blood for circulating vertebrate pathogens or antibodies directed against them. We tested whether naturally acquired antibodies in different host species can be detected by host-specific and pan-specific ELISAs in mosquito blood meals. Cat- and alpaca-specific ELISAs could detect antibodies against Toxoplasma gondii or SARS-CoV-2 in blood meals of Aedes japonicus for 48 and at least 24 h, respectively. In the pan-specific ELISA, a conjugated protein A/G and anti-IgY were used to detect antibodies of mammalian and bird hosts. Thus, Toxoplasma antibodies could be detected in mosquitoes fed on blood from humans, chicken, pig, and sheep up to 72 h after the blood meal. The results, however, demonstrated differences in sensitivities between different host species, and the assay requires further evaluation. Xenosurveillance with antibody detection in mosquito blood meals can be an additional surveillance tool that would especially be helpful when it is difficult to sample the potential animal reservoirs.

15.
Vector Borne Zoonotic Dis ; 21(11): 900-909, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1532426

RESUMO

Background: A wide range of insect-specific viruses (ISVs) have been reported worldwide. There are no studies from India that have reported ISVs. The current study describes the identification of Phasi Charoen-like virus (PCLV) from Aedes aegypti mosquito-pools from six districts of Karnataka state, India. Materials and Methods: During the Chikungunya virus (CHIKV) outbreak in the Bangalore Urban district in 2019, using conventional PCR, it was found that both human and mosquito samples were positive for CHIKV. For retrieve the complete genome sequence, mosquito samples were subjected to next generation sequencing (NGS) analysis and PCLV was also found. During 2019, as part of a vector-borne disease surveillance, we received 50 mosquito pool samples from 6 districts of the state, all of them were subjected to NGS to identify PCLV. Results: The A. aegypti mosquito-pools samples were subjected to the NGS platform that led to identification of an ISV, PCLV. PCLV was identified in 26 A. aegypti mosquito-pools collected from 6 districts. We also found mixed infection of PCLV with the Dengue virus (DENV; genotypes 1 and 3) and CHIKV from five pools. The nucleotide identity for the L gene of Indian PCLV sequences ranged between 97.1% and 98.3% in comparison with the Thailand sequences. Conclusions: To the best of our knowledge, this is the first report of PCLV dual infection with DENV and CHIKV in India. The present study confirms the presence of PCLV in A. aegypti mosquitoes from Karnataka state. The study adds India in the global geographical distribution of PCLV.


Assuntos
Aedes , Vírus Chikungunya , Vírus de RNA , Animais , Vírus Chikungunya/genética , Índia/epidemiologia , Mosquitos Vetores
16.
J Travel Med ; 28(8)2021 12 29.
Artigo em Inglês | MEDLINE | ID: covidwho-1364814

RESUMO

BACKGROUND: In August 2020, in the context of COVID-19 pandemics, an autochthonous dengue outbreak was identified for the first time in Italy. METHODS: Following the reporting of the index case of autochthonous dengue, epidemiological investigation, vector control and substances of human origin safety measures were immediately activated, according to the national arbovirus surveillance plan. Dengue cases were followed-up with weekly visits and laboratory tests until recovery and clearance of viral RNA from blood. RESULTS: The primary dengue case was identified in a young woman, who developed fever after returning from Indonesia to northern Italy, on 27 July 2020. She spent the mandatory quarantine for COVID-19 at home with relatives, six of whom developed dengue within two weeks. Epidemiological investigation identified further five autochthonous dengue cases among people who lived or stayed near the residence of the primary case. The last case of the outbreak developed fever on 29 September 2020. Dengue cases had a mild febrile illness, except one with persistent asthenia and myalgia. DENV-1 RNA was detected in blood and/or urine in all autochthonous cases, up to 35 days after fever onset. All cases developed IgM and IgG antibodies which cross-reacted with West Nile virus (WNV) and other flaviviruses. Sequencing of the full viral genome from blood samples showed over 99% nucleotide identity with DENV-1 strains isolated in China in 2014-2015; phylogenetic analysis classified the virus within Genotype I. Entomological site inspection identified a high density of Aedes albopictus mosquitoes, which conceivably sustained local DENV-1 transmission. Aedes koreicus mosquitoes were also collected in the site. CONCLUSIONS: Areas in Europe with high density of Aedes mosquitoes should be considered at risk for dengue transmission. The presence of endemic flaviviruses, such as WNV, might pose problems in the laboratory diagnosis.


Assuntos
Aedes , COVID-19 , Vírus da Dengue , Dengue , Animais , Dengue/epidemiologia , Vírus da Dengue/genética , Surtos de Doenças , Feminino , Humanos , Itália/epidemiologia , Mosquitos Vetores , Filogenia , SARS-CoV-2
17.
Insects ; 12(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: covidwho-1346503

RESUMO

Aedes aegypti control programs require more sensitive tools in order to survey domestic and peridomestic larval habitats for dengue and other arbovirus prevention areas. As a consequence of the COVID-19 pandemic, field technicians have faced a new occupational hazard during their work activities in dengue surveillance and control. Safer strategies to monitor larval populations, in addition to minimum householder contact, are undoubtedly urgently needed. Drones can be part of the solution in urban and rural areas that are dengue-endemic. Throughout this study, the proportion of larvae breeding sites found in the roofs and backyards of houses were assessed using drone images. Concurrently, the traditional ground field technician's surveillance was utilized to sample the same house groups. The results were analyzed in order to compare the effectiveness of both field surveillance approaches. Aerial images of 216 houses from El Vergel village in Tapachula, Chiapas, Mexico, at a height of 30 m, were obtained using a drone. Each household was sampled indoors and outdoors by vector control personnel targeting all the containers that potentially served as Aedes aegypti breeding sites. The main results were that the drone could find 1 container per 2.8 found by ground surveillance; however, containers that were inaccessible by technicians in roofs and backyards, such as plastic buckets and tubs, disposable plastic containers and flowerpots were more often detected by drones than traditional ground surveillance. This new technological approach would undoubtedly improve the surveillance of Aedes aegypti in household environments, and better vector control activities would therefore be achieved in dengue-endemic countries.

18.
Elife ; 102021 08 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1513052

RESUMO

Monitoring local mosquito populations for insecticide resistance is critical for effective vector-borne disease control. However, widely used phenotypic assays, which are designed to monitor the emergence and spread of insecticide resistance (technical resistance), do not translate well to the efficacy of vector control products to suppress mosquito numbers in the field (practical resistance). This is because standard testing conditions such as environmental conditions, exposure dose, and type of substrate differ dramatically from those experienced by mosquitoes under field conditions. In addition, field mosquitoes have considerably different physiological characteristics such as age and blood-feeding status. Beyond this, indirect impacts of insecticide resistance and/or exposure on mosquito longevity, pathogen development, host-seeking behavior, and blood-feeding success impact disease transmission. Given the limited number of active ingredients currently available and the observed discordance between resistance and disease transmission, we conclude that additional testing guidelines are needed to determine practical resistance-the efficacy of vector control tools under relevant local conditions- in order to obtain programmatic impact.


Assuntos
Culicidae , Resistência a Inseticidas , Inseticidas , Controle de Mosquitos , Mosquitos Vetores , Doenças Transmitidas por Vetores/prevenção & controle , Animais , Guias como Assunto
19.
Gac Med Mex ; 157(2): 187-193, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1317391

RESUMO

In American countries, simultaneously with the coronavirus disease 2019 (COVID-19) pandemic, epidemics caused by different arboviruses (dengue, chikungunya and Zika viruses) are occurring. In Mexico, several of the strategies to control the Aedes aegypti mosquito, which transmits arboviruses, involve the interaction of health personnel with the community. Due to the COVID-19 pandemic, social distancing and home confinement measures have been implemented. To obey these measures and avoid the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, the National Center for Preventive Programs and Disease Control (CENAPRECE) has presented the vector control strategy in the scenario of simultaneous dengue and COVID-19 transmission in Mexico. In this work, we mention the routine comprehensive mosquito control measures and describe the adaptations that have been made. Furthermore, we discuss the relevance of medical personnel training and supervision, especially focusing on the similarity of symptoms between both pathologies.


En países americanos, simultáneas a la pandemia de enfermedad por coronavirus 2019 (COVID-19) se están dando epidemias ocasionadas por diferentes arbovirus (del dengue, chikunguña y virus del Zika). En México, varias de las estrategias para control del mosquito Aedes aegypti, transmisor de arbovirus, involucran la interacción del personal salubrista y los moradores. Debido a la pandemia de COVID-19 se han implementado medidas de distanciamiento social y resguardo domiciliario. Para respetar estas medidas y evitar riesgo de contagio por coronavirus 2 del síndrome respiratorio agudo grave (SARS-CoV-2), el Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE) ha presentado la estrategia de control de vectores en el escenario de transmisión simultánea por dengue y COVID-19 en México. En este trabajo mencionamos las medidas habituales de manejo integral de mosquito y mencionamos las adaptaciones realizadas. De igual forma, discutimos la relevancia de la capacitación y la supervisión al personal médico, esto debido a la similitud entre la sintomatología entre ambas patologías.


Assuntos
Aedes/virologia , Infecções por Arbovirus/epidemiologia , COVID-19/epidemiologia , Monitoramento Epidemiológico , Controle de Mosquitos/métodos , Pandemias , Animais , Infecções por Arbovirus/prevenção & controle , COVID-19/prevenção & controle , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/prevenção & controle , Dengue/epidemiologia , Dengue/prevenção & controle , Promoção da Saúde , Humanos , Disseminação de Informação , Distanciamento Físico , Infecção por Zika virus/epidemiologia
20.
Cells ; 10(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1129686

RESUMO

The superfamily of nuclear receptors (NRs), composed of ligand-activated transcription factors, is responsible for gene expression as a reaction to physiological and environmental changes. Transcriptional machinery may require phase separation to fulfil its role. Although NRs have a similar canonical structure, their C-terminal domains (F domains) are considered the least conserved and known regions. This article focuses on the peculiar molecular properties of the intrinsically disordered F domain of the ecdysteroid receptor from the Aedes aegypti mosquito (AaFEcR), the vector of the world's most devastating human diseases such as dengue and Zika. The His-Pro-rich segment of AaFEcR was recently shown to form the unique poly-proline helix II (PPII) in the presence of Cu2+. Here, using widefield microscopy of fluorescently labeled AaFEcR, Zn2+- and Cu2+-induced liquid-liquid phase separation (LLPS) was observed for the first time for the members of NRs. The perspectives of this finding on future research on the F domain are discussed, especially in relation to other NR members.


Assuntos
Íons/metabolismo , Mosquitos Vetores/patogenicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Aedes , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA